Extensions 1→N→G→Q→1 with N=Q8xC32 and Q=C2

Direct product G=NxQ with N=Q8xC32 and Q=C2
dρLabelID
Q8xC3xC6144Q8xC3xC6144,180

Semidirect products G=N:Q with N=Q8xC32 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC32):1C2 = C3xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC32484(Q8xC3^2):1C2144,82
(Q8xC32):2C2 = C32:11SD16φ: C2/C1C2 ⊆ Out Q8xC3272(Q8xC3^2):2C2144,98
(Q8xC32):3C2 = C3xS3xQ8φ: C2/C1C2 ⊆ Out Q8xC32484(Q8xC3^2):3C2144,164
(Q8xC32):4C2 = C3xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC32484(Q8xC3^2):4C2144,165
(Q8xC32):5C2 = Q8xC3:S3φ: C2/C1C2 ⊆ Out Q8xC3272(Q8xC3^2):5C2144,174
(Q8xC32):6C2 = C12.26D6φ: C2/C1C2 ⊆ Out Q8xC3272(Q8xC3^2):6C2144,175
(Q8xC32):7C2 = C32xSD16φ: C2/C1C2 ⊆ Out Q8xC3272(Q8xC3^2):7C2144,107
(Q8xC32):8C2 = C32xC4oD4φ: trivial image72(Q8xC3^2):8C2144,181

Non-split extensions G=N.Q with N=Q8xC32 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC32).1C2 = C3xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC32484(Q8xC3^2).1C2144,83
(Q8xC32).2C2 = C32:7Q16φ: C2/C1C2 ⊆ Out Q8xC32144(Q8xC3^2).2C2144,99
(Q8xC32).3C2 = C32xQ16φ: C2/C1C2 ⊆ Out Q8xC32144(Q8xC3^2).3C2144,108

׿
x
:
Z
F
o
wr
Q
<